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The author considers the steady-state temperature distribution in a 
jet of incompressible fluid emitted in pulsed bursts from a point source, 
with and without account taken of viscous dissipation. When viscous 
dissipation is not taken into account, an exact solution is obtained for 
the energy equation, bounded in the entire closed interval 0 -< 0 ~ ~r. 
When viscous dissipation is considered, the energy equation is obtained 
using the introduced separation of variables. 

w Cons ider  the t e m p e r a t u r e  d i s t r ibu t ion  in  an 
a x i s y m m e t r i c  je t  of i n c o m p r e s s i b l e  fluid leaving  a 
thin tube and en te r ing  an unbounded space f i l led with 
the same  fluid. A point  heat source  of in tens i ty  2~q 0 
is placed in the tube.  We a s s u m e  the source  in tens i ty  
is  such that the change in  dens i ty  as a funct ion of t e m -  
p e r a t u r e  can be ignored.  

We wri te  the energy  equation of the je t  without 
al lowing for  v iscous  d i ss ipa t ion  for the s t eady- s t a t e  
t e m p e r a t u r e  d iw 

1 
div (v T - -  a V T) = Qo - - ,  (1) 

p cp 

where  Qo = 2rqo6 (r) and 5 (r) is  the delta function.  
Heat flow at the coordinate  or ig in  is  not cons idered  

because  of the inf in i te ly  l a rge  quant i ty  of heat l i b e r -  
ated. F r o m  (1) and f rom the Os t rog radsk i i -Gauss  
theorem,  we obtain 

Or ] p cp 
S 

Using Eq. (2) and al lowing for the values  of the je t  
veloci ty  components  obtained in [1], we wri te  the je t  
t e m p e r a t u r e  as 

r = y (0)_. (3) 
r 

(The t e m p e r a t u r e  at inf ini ty  is  a s sumed  to be zero.  ) 
Condition (2) and the condit ion that T be r e s t r i c t e d  
over  the en t i re  closed in te rva l  0 -<- 0 -< ~r a r e  used as 
the boundary  condit ions for  Eq. (1). 

By wr i t ing  Eq. (1) in  spher ica l  coordinates  and 
in t roduc ing  the new var i ab le  x = cos 0, we f inal ly  ob-  
ta in  

( 1 - -  x ~) y" - -  2xy '  = 2~ (fg)', (4) 

al lowing for (3) and the values  for the veloci ty c o m -  
ponents  v r and v 0 (the p r i m e s  denote d i f fe rent ia t ion  
with r e spec t  to x); here  X - v / a  (this quanti ty is the 
Prandt l  number)  ; 

On in tegra t ing  this  equation and al lowing for  the 
boundary  condi t ions,  we obtain 

C1 g - -  
(A - -  x) a 

Defining the constant  C1 f rom condit ion (2), we ob-  
ta in  a f inal  expres s ion  for the t e m p e r a t u r e  

T = - - q ~ 2 4 7  AA2--1--cos0 ) 2~x 

x { ~ r p %  [(A + i)~ (A --4~ - - I )  

- -  (A - -  1)a(A + 4)~ §  (6) 

Consider  the following three  cases :  
a) 2X << A. It follows f rom express ion  (6) that the 

t e mpe r a t u r e  is 

T :  qo~ ( 1 +  2cos01 . (7) 
2~ r p % \ A ]  

For  a fluid with X ~ 1, Eq. (7) becomes  

T ~ i  -- q0 ( A  +2cos 0 '/ 
~rpc~ 2-A / 

If (2cos 0)/A << 1 Eq. (6) becomes  

T -- q0~ (8) 
2 v r p c p  ' 

i .  e . ,  for  a fluid with 2~ << A and low m o m e n t u m  (A >> 
>> 1), the j e t  t e m p e r a t u r e  does not depend on m o m e n -  
tum or the po la r  angle 0 but is  a funct ion only of the 
v i scos i ty  and rad ius .  

b) A ~ 1 (the m o m e n t u m  P ~ oo). 
It follows f rom (6) that T ~ 0. This  me a ns  that the 

t e m p e r a t u r e  approaches  the t e m p e r a t u r e  at inf ini ty  
everywhere  except at the flow axis  0 = 0, where the 
t e m p e r a t u r e  is  given by 

To _ q0 (2)~ -k 1) (9) 
4 ~ r p c p  ' 

i ,  e . ,  in this  case the t e mpe r a t u r e  at the axis  u n d e r -  
goes a d iscont inui ty ,  r e m a i n i n g  bounded. F r o m  (7) 
and (9) it is  c l ea r  that  the t e m p e r a t u r e  at the flow axis  
i n c r e a s e s  with i n c r e a s e  in  je t  momentum.  

c) A ~ 1 (momentum approaches  infinity) ; X ~ 0 
(v ~ 0 ; a is bounded). It then follows f rom (6) that  

1 - -  X 2 
f - (5) 

A - - x  

(A _> 1 is  a constant  assoc ia ted  with the total  m o m e n -  
tun flux of the jet) .  

T -- q0 (10) 
2ra p Cp 

For  a fluid in  which the v i scos i ty  approaches  zero  
and the t he r ma l  diffusivi ty  is  f ini te  for an inf ini te  j e t  
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m o m e n t u m ,  the je t  t e m p e r a t u r e  wil l  not depend on the 
m o m e n t u m  or on the po la r  angle .  

w If we allow for  d i s s ipa t ion  l o s se s ,  the energy  
equation for  the s t eady- s t a t e  t e m p e r a t u r e  d i s t r ibu t ion  
in a submerged  je t  now becomes  

v v T - - a h T = ~ + 2 ~ 5 ( r )  % , (11) 
p cp 

where  

* =  G- + j 

The obtained equation (11) is  l i nea r .  Its genera l  
solut ion is  equal to the sum of the genera l  solut ion of 
the homogeneous equation (5) obtained in w 1 and 
the p a r t i c u l a r  solut ion of Eq. (11). 

Using (11) we wr i te  the p a r t i c u l a r  solut ion as 

T =  z(0) (12) 
r2 

We wr i te  Eq. (11) in spher ica l  coord ina tes .  Using 
the exp re s s ions  for  v r and v 0 f rom [1], together  with 
Eq. (4), we obtain 

(1--x~)z"--2xz ' - -2~, fz~--4~f lz+ 2z = --q),  (13) 

,where 

8v 
(1)= -- • 

p cp 

x [! l--2Ax + x~) ~ [( 1---x ~) + (1 -+- A 2 --2Ax)] 
[ ( A  - -  x) ~ 

Ax --1 x3 ! 

(A_x )4  ~ (A_x)i-]  �9 

It is ve ry  difficult  to evaluate  the p a r t i c u l a r  solut ion 
of Eq. (13). We can show that for a homogeneous equa-  
t ion co r re spond ing  to (13), X = 0 and X = 1/2 (for A = 1) 
a r e  e igenvalues .  

However,  these  two cases  have no physical  meaning ,  
s ince  ~ = 0 means  that the v i scos i ty  is zero,  while, when 
A = 1, the veloci ty  components  v r and v0 undergo a 
d iscont inui ty  at the 0 = 0 axis .  

NOTATION 

T is the temperature; v is the kinematic viscosity 

of the fluid; p is the fluid density; X = v r is the Prandtl 

number; a = k/pep is the thermal diffusivity; Cp is the 
specific heat of the fluid; v r is the radial velocity com- 

ponent; v 0 is the polar velocity component; �9 is a dis- 
sipative function; k is the specific thermal conductivity. 
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